RVMTb -0

Theory and Use of Conditional Composition

Rajit Manohar
K. Rustan M. Leino*

Department of Computer Science
California Institute of Technology
Pasadena, CA 91125.

July 1, 1994

“The somewhat debatable role of goto statements in practical programming
is reflected in their theoretical properties, in that in the treatment both of
their semantics and their correctness we are confronted with difficulties of
a nature not previously encountered.” From J. de Bakker. Mathematical
Theory of Program Correctness. Chapter 10. Prentice-Hall, 1980.

0. INTRODUCTION

In this note, we generalize the concept of function composition. We introduce the notion of conditional
composition of functions, and develop a theory of such compositions. We also introduce a conditional replace
operator, which can be used to define conditional composition in terms of ordinary function composition.

We show how these concepts can be used in four application areas: program semantics; programming
languages; databases; embedded systems. In particular, we show how exceptions can be described in terms
of the IF' statement, and how conditional composition can be used to describe other programming language
constructs like a jump statement and a loop exit. Contrary to what the quotation given above suggests,
we show that goto statements are not very different from the IF statement. We relate the conditional
composition operator to concepts from relational algebra in databases, and show how conditional composition
can be used to describe an embedded system with various priority levels.

1. THEORY OF CONDITIONAL COMPOSITION
We generalize the concept of function composition to conditional function composition. To enable us
to do so, we first introduce a notation for tagged collections, which can be used to represent lists, arrays, or
any other labeled collection of objects.
Our proof format is from [4]. We use [] for everywhere brackets, which denote universal quantification
over the state space, and the infix dot to denote function application.

1.0. TAGGED COLLECTIONS

A quantifier @ is defined by a triple (%, u, f) where x is an associative and symmetric operator from
D x D — D, u is the unit element of %, and f is a function from T'— D (cf. [6]). A quantified expression,
(or quantifier) is an expression of the form:

(Qzlrz>tz)

where z is an unordered list of identifier names (dummies), r.z (the range) is a predicate, and ¢.z (the term)
is an expression of some type 7. When r.z is true everywhere or understood, we omit the range and write
the quantification as:

(Q zvtx)

Informally, if the set of all values z for which r.z holdsis {zg, 21, . . ., 2x }, then the value of the quantified
expression is u x f.2g % f.21 x - - - % f.z;. For example, summation can be written as the quantifier (+, 0, id),
where id is the identity function. Another common quantifier is the set constructor, which is the triple
S = (U,0,{}), where function {} is defined by the relation {}.z = {z}. We write the set constructor as
{z | r.zvt.z} instead of (S z | r.z > t.2).

* Supported in part by Air Force Office of Scientific Research grant number 61301.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
01 JUL 1994 2. REPORT TYPE 01-07-1994 to 01-07-1994
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Theory and Use of Conditional Composition £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 20
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

RVMT7b -1

We use quantification to denote a tagged collection. We represent an element in the tagged collection
by (i:z), where ¢ is the index of the element, and z is the value tagged by i. We use) to denote an empty
collection, which has the property that § U [= [for any [. Formally, we define | | to be the quantifier
(U,0,4d). U is an operator analogous to the disjoint set union operator, often written W. An element (i: z)
is contained in {0 U {1 just when it is contained in either [0 or {1.

An indexed collection of objects has an additional property, namely that given an index, the element
associated with that index is uniquely defined. Therefore, we restrict U in the following manner: given [0
and [1, [0 U {1 is defined if and only if the index sets of {0 and {1 are disjoint.

We define (i: z) to be function (¢ — z) which is the function whose domain is the element i and whose
range is the element z. Therefore, we have the property that (i:z).i = z which is a consequence of function
application. Notice that with this meaning, the restriction on U follows from the fact that a function cannot
be one-to-many.

Since | | is simply a quantifier, we can use the following properties which follow from the general prop-
erties of quantification. However, we must be careful since U imposes certain restrictions on its arguments.

We present some of the axioms from [6]. These axioms are simply instances of a few of the axioms for
general quantifiers.

The following two axioms can be used to eliminate quantification from an expression.

Axiom (Empty Range)

(L]i! falsew fa:t.4) =0 (0)
Axiom (One-point rule)
(Uil[i=F]e fita)y=(f.E:L.E) (1)

For more general ranges, the following axiom can be used.

Axiom (Range split)
For mutually exclusive r and s,

(il ravsivfatiay= (il rivfatau{]ilsi>fiti) (2)

The following axiom can be used to rewrite the term.

Axiom (Transform term)
If, for all 4, r.i = (t.i = z.i) A(f.i = g.1), then

(Jilravfat)y={(]ilrivgiza) (3)

Given a tagged collection, it is important to be able to determine the value associated with a particular tag
in the collection. We propose the following axiom for tagged collections.

Axiom (Projection)
For injective f,

(il ravfictidyk=(]il raA[fi=Fk>fiti)k (4)
We now prove,

Theorem (Projection)
If r and s are mutually exclusive and r.£ holds,
(Uil rdvati)u ()il sivizi))k=1tk (5)
Proof. For this proof, we define function %.: in the following manner:
. ta if ri
h.i=
T o if s

Now,

(il rav ety U(il siviza))k

= { (3): transform term; twice }

(il ravichyU (|7l sivizhi))k

RVMTb -2

= { (2): range split; r,s are mutually exclusive }
(L raVvsiviha)k
= { (4): projection }
(el (riivsi)Ali=k]lvihad).k
= { r.k; (3): transform term }
(el [i=k]l>iti)k
= { (1): one-point rule }
(k:1.k).k
= { definition }
t.k

O

Using these theorems and axioms, we can manipulate arbitrary tagged collections. For example, the
tagged collection a = (|| ¢ | 0 < i A¢ < n > i:i?) can be considered to be an array of size n that contains
the squares of the first n non-negative integers. a.k would be the kth element of the array (for 0 < £k < n),
since:

Jil0<ini<nvsii?)k
= { (4): projection axiom }
LJelo0<ini<nAi=klvii®)k
= {0<kAnk<n }
el [t =Fkl>ed?)k
= { (1): one-point rule }
(k:k%).k
= { definition }
2
O

We use Tag.D to denote the type of a tagged collection of elements from D with a fixed index set U.
Notice that given a fixed index set U, the tagged collections in Tag.D can be viewed as total functions from
U — D. For a partial function p with range R C U, we have that

p=(Jili€R>ip.i)

1.1. FUNCTIONS AND COMPOSITION
Functions of type Tag.D — D for any domain D can be composed in different ways. We use f, ¢, and
h to denote such functions. We use L to denote a tagged collection. Note that L = (| | i > i: L.q).
We generalize the notion of function composition as follows. For any predicate p on U, we define o,
pronounced “compose p” as:

(fopg)L=f((Uilpiveglyu{]il-p.ivi:Li)) (6)
In words, (f o, ¢) applied to a tagged collection L replaces L.k by ¢.L, for all £ that satisfy p.

Theorem (Associativity)
If [¢ = p], then (fop g)og h=fop, (gog k) , ie. o, and o, are mutually associative if [¢ = p].(7)

Proof.
((fopg)ogh).L
= { (6): def. of o4 }
(fopg) (il givah LYyu(]il —g.ivi:Li))
{ (6): def. of o) }

RVMTb -3

fUilpivig(el givahL)U{il —gi>i:La)))U
(Lel—-pivi:({il giviah YU (]!l —g.ivi: La)).i))
= { (5): projection, since —p.i = —q.i }
FUUilpivig (]l givizh LYU{ il ngiva:Ld)))U
(Uil —-pivi:Li))
{ (6): def. of o4 }
FUilpivic(gog h).Lyu (il —-p.ivi:L.i))
{ (6): def. of o) }
(F op (9 09 W)L

O
Theorem (Associativity)
op is associative. (8)
Proof. Follows from (7) and [p = p].
O

A function of special interest is the projection function, defined as
- L= Lk 9)
and pronounced as “project £”. This function can be used to extract a value associated with a particular
tag from a tagged collection.
Theorem (Left identity)
[is left identity of o,, for all £ satisfying p. (10)
Proof.
(Ix op f)-L
= { (6): def. of o) }
e (U é T pivicfLYU(il —pivi:Lai))
{(9): def. of [, }
(elpevafLyu(il —pivaLi))k
{ (5): projection, since p.k }
f-L

O

It follows that o, has no right identity if p is satisfied by more than one k since the projection functions are
distinct.

Theorem (Left zero)

[is left zero of o, for all k satisfying —p. (11)
Proof.

(Ix op f)-L
= { (6): def. of o) }

(U é T pivicfLYU (il —pivi:Li))
= {(9): def. of [}

(elpevafLyu(il —pivaLi))k
= { (5): projection, since =p.k }

L.k
= {(9): def. of [}

oL

RVMTb -4

O
It follows that o, has no right zero if =p holds for more than one & since the projection functions are distinct.

Theorem
(fop) og g =1Fopvg g, for all k satisfying g¢. (12)
Proof.

((fop k) og9).L
{ (6): def. of o4 }
(fop)i guivizg. LYyu (il —g.ivi:L.i))
= { (6): def. of o) }
fUilpival, (Uil giviig Lyu{ il —givi:Li)))U
Uel-pivi((el giviagl)yu (il ng.iviLi)).d))
= { (6): def. of o4 }
FQU il peivi(lyoq9).L) U
(il —piva((]il giviig. LYU(7] —g.ivi:Lai)).q)
= { (10): left identity, since ¢.k }
F Uil pivig Ly
il —piva({(]il giviig. YU (7] —g.ivi:Lai)).q)
= { (2): range split }
F Uil pivig Ly
(il —pingive((]il giviig LYU{ |7 —ng.ivi:L.i)).e)U
(Uil —-pin-givi((Uil givag Ly (il —g.iva:Lid)).d)
= { (5): projection, twice }
FUUilpivig Lyu{]il -pingivig.L)U
(il =p.iAngivi:L.i)
= { (2): range split }
FU{Uil piv(—pingi)>ig LyU
(il =p.iAngivi:L.i)
= { pred. calc. }
FUil(pVe)iviig.L)U
(L]il~(pVq)ivi:L.i))
= { (6): def. of opvg }
(f opvq 9)-L

1.1.0. POINT PREDICATES
Let [[k] be the predicate that is true only at z = &, i.e. [k].2 = [z = k]. [k] is a point predicate since it
is true at exactly one point in .
Theorem
f Op e =1 OpVv[k] le
13
fop Ty =Fopaapeg e (13)

Proof. Note that the two lines given above express the same property. We prove the former.

(f opvixg [i)-L
{ (6): def. of opypry; (9): def. of [}

f(UilpavkliveLk)u (]l —piA-[k].iv i L.i))
{ (2): range split; pred. calc. }

FUU il pin=[kliva:Dk)yU (] il —piA-[kliviLi)u (]| [k].ie i L.k))

{ (2): range split; (3): transform term; pred. calc. }

FUU i pin=[k]iv i LEYU (]| —~p.i A=[k].iv i L) U

(Ll [kl.inpavac LEYU (]| [k].iA—p.ivi: L))
{ pred. calc. }
FUilpivaLB)U{]il—pivi:Li))
{ (6): def. of o,; (9): def. of [, }

(f op Tg).L
We now have,
Theorem
f Ofalse § = f
Proof.

(f ofatse 9).L
{ (6): def. of ofqrse }

FUL il falseivizg. LYy U (|7 | —false.i > i: L.3))
{ (0): empty range }

FOU]isiLa)
{ 0 is the identity of U }

Iy

RVMTb -5

O

We mentioned earlier that o, had no right identity if p holds for more than one point. However, when
p is a point predicate, we have that

Theorem (Right identity)
[is the right identity of opzy.

Proof.

f o Ik

{ (13), since false V [k] = [£] }
[ofaise Iy

{(14) }
f

We introduce some special notation, | |, defined as follows

I_ka :f Otrue [k

Theorem

e =f ooy I«

Proof.

f O [k] [

{(13) }
Joaprviag Tk

{ pred. calc. }

(15)

RVMTb -6

f Otrue rk
= { (16): def. of | |1 }
Lf]k
O
Theorem
Tels =15 (18)
Proof.
Tels
= { (16): def. of | |; }
rk Otrue f,'
= { (10): left identity, since true.k, for any k }
I
O
Theorem
For any f, [[f&]; =] (19)
Proof.
LLf Ikl
= { (16): def. of | |; }
Lka Otrue [j
= { (16): def. of | |k; (8): associativity }
f Otrue f Otrue f
= { (10): left identity, since true.k, for any k }
f Otrue fl
= {(16): def. of [|; }
1£15
O
Theorem
|] is idempotent (20)
Proof. Follows from (19). O
Theorem
Lf Otrue ng = Lka Otrue Lng (21)
Proof.
Lf Otrue ng
= { (16): def. of | |x; (8): associativity }
f Otrue § Otrue [k
= { (10): left identity, since true.k for any & }
f Otrue rk Otrue § Otrue rk
= { (16): def. of | |, twice; (8): associativity }
Lka Otrue Lng
O

With these operators, we cannot define (f opa4 ¢) using o, and o,. However, if we had a way to define
o.p in terms of oy, then we could obtain p A ¢ from p V ¢q. We do not know how to do this, but instead
introduce a new operator e, defined by

RVMTb -7

“zo., (22)
Theorem (dual of (12))
(fop 1) ®g g =71 epng g, for all k satisfying —q. (23)
Proof.
(f op Ik) o
= {(2): def of e, twice }
(f 0ap k) ©=g ¢
= { (12), with p, ¢ := —=p, ¢, since =gk }
f Oapv-gq ¢
= { De Morgan }
Foatpna) 9
= {(22): def. of epry }
f ®rng 9
O
We have additional properties of e, which follow from those of o,.
Theorem (Left zero)

[, is left zero of e, for all k satisfying p. (24)
Proof. Follows from (11), (22). |
Theorem (Left identity)

[is left identity of e, for all & satisfying —p. (25)
Proof. Follows from (10), (22). a
Theorem (Right identity)

[} is the right identity of e[z (26)
Proof. Follows from (15), (22). O
Theorem

f’p Ik :f°pv|[k]| le

27

f.p rk :f.p/\—'[k]] rk ()
Proof. Follow from (13), (22). O

Since [is the right identity of of;j, we examine the effect of ep;p [y.

Theorem

f (k] rk :f Otrue rk (28)

Proof. TFollows from (16), (17), (22). a

We explore additional properties of o, for monotonic functions. We assume that there exists some
partial ordering C defined on the elements of D. We extend this order to Tag.D by the following definition:

(el pivfat)S(il pivfaud)=(Vil p.iv>t.iC ui) forinjective f. (29)
This ordering is monotonic in each member of Tag.D. Note that this order is defined only if f is injective.
We now have the following theorems:

Theorem (Monotonicity)
f op ¢ is monotonic in f. (30)
Proof.
(fop 9)-LE(f op g).L
= { (6): def. of o,, twice }
F il pivig YU il pivi:La) Tl pivizg.Lyu{ il —p.ivi:L.i))

1.2,

2.

RVMTb -8

feyf

Theorem (Monotonicity)
f op g is monotonic in ¢, for monotonic f.

Proof.

(fopg)LE(fopyg')L
= { (6): def. of o,, twice }

Filpivig Uil —piva L)l pivig L)yUu(]il —p.ivi:L.i))
<= { f is monotonic }

el pavagL)U{ il —pavaLi) S]]l pivag LYyU (]l —p.ivi:Li))
= {(29): Con Tag.D }

(JilpivigL)E(]ilpiviig' L)
= {(29): Con Tag.D }

(Vilpivg LCg'.L)
= { calculus }

g.LC ¢'. L
< {1}

gC ¢

EXTENSION TO OTHER OPERATORS
So far we have examined the effect of extending o to o,. We now demonstrate that we can define o,
in terms of o, given an additional operator. This operator can then be used to extend other operators to
tagged collections.
To be able to define o, in terms of o, notice that the o, operator performs a selective substitution.
Motivated by this, we define «po —a conditional replace operator— and its dual ap» as follows:

(ivis.a) apo (| Jiva:t)=(]| -pivizsayUd{]il pivi:ti) (31)

(Uividrsa)y ape (v icta)=(¢l pivarsayu (il -piviti) (32)

We can define o, in terms of o using the «po operator. To do so, we define C.u to be the tagged
collection (| | ¢ & i: u). We now have:

(fopg)L=fo(L apo C(g.L)) (33)
(fopg)L=fo(L aps C(g.L)) (34)
Using this definition of «po, we can extend an arbitrary binary operator op having a unit element u. Let

op denote the pointwise extension of op to total functions from # — D. We can write these total functions
as tagged collections. We can define op,, as follows:

Xop, Y=Xop (Y epo C.u) (35)

Notice that with op replaced by o, this definition differs from the one used for conditional composition. We
will see op,, again in section 4.

APPLICATION AREA: PROGRAM SEMANTICS
We describe a program semantics with an additional conditional composition operator <,, where p is a
predicate on U. Imposing a structure on the predicates used for the weakest precondition semantics allows
us to identify the composition operators presented earlier with the composition of statements. We follow the
path of [7], [8], [9] and [11] which first describe an operational semantics in terms of traces and then derive
a weakest precondition semantics from 1it.

RVMTb -9

2.0. TRACE SEMANTICS
We will use the semantics of statements presented in [8], [11], [5]. We use X' to denote the (non-
empty) state space. Variables that refer to the state are implicitly assumed to be from X. Traces are
nonempty sequences of states. fin.t is true just when ¢ is a trace of finite length. inf.t is the negation of
fin.t. Concatenation of traces is denoted by juxtaposition. Using these notational conventions, we have the
following trace semantics for skip and assignment.

skip ={z vz} (36)

(v:=E)={zvzz[v:=E]} (37)
For sequential composition, we have [8], [11]

S;T={s,z,tlszeSAate TAfinsvsut}U{s|secSAinfsrs} (38)

We assume that there exists a total function idz: X — . This function defines a partition on X'. We
introduce a conditional composition operator <, (pronounce “try”, as in triangle) —where p is a predicate
on {{— that has the following operational meaning. We write S <, T for the statement whose execution
consists of: executing S; if execution thereof terminates in a state z satisfying (p o idz), then executing T
as well; if S does not terminate, or S terminates in a state z satisfying —(p o idz), then not executing 7.
The trace semantics can be described by

S, T={s,z,tlste SNzt TAfins \(poidz).zvsxt}U
{s | s€ SA(inf.sV—(poidz).(last.s))> s} (39)

Analogous to e, we define €, to be <_,.

Theorem
3 = true (40)
Proof. Follows from the definition of <i... O

Theorem (Identity of ;)
skip is the left and right identity of ; (41)

Proof. Can be taken without modification from [8],[11]. O

The following are some theorems about semicolon.

Theorem (From [5], [8], [11].)

; 1s assoclative. (42)
; 1s universally U-distributive in its left argument. (43)
; 1s positively U-distributive in its right argument. (44)

We can use the definition of repetition and selection from [5], [8], or [11] without modification since the
trace semantics for semicolon has not been changed. We use the definition of the IF' statement given in [5].
Since we have defined all our earlier semantics in terms of trace sets, we rewrite the definition presented in
[5] in the following manner. For any predicate b, we define b7 as follows:

r={zlzeXAbzvz} (45)
Using this definition of 87, we define the IF statement from [5] as:
1f<|] > b — Sl>ﬁ = (U 1> b7 Sz) U (V > —|bz‘>?; 1) (46)

where F is defined as the set of all eternal traces. If we know that (3 ¢ > b;) holds, then we can simplify
(46) to:

1f<|] > b — Sl>ﬁ = (U 1> b7 Sz) (47)
Using these trace semantics, we have the following theorem:

Theorem (Conditional Composition)
59, T=38;if (poidz) — T|-(poidz) — skip i (48)

Proof. For this proof, we use IF = if (p o idz) — T[—(p o idz) — skip i
S;IF

2.1.

RVMT7b -10

{ (38): def. of ; }

{s,z,t | sze SAztelIF Nfinsvszt}U{s| se SAinf.s> s}
= { (46): def. of IF'; (47) }

{s,z,t | sz € SAzt €((poide)?; T)U (—(poidz)?;skip) A fin.s > szt} U

{s | seSAinf.s>s}
= { range split }

{s,z,t | sze SAzte((poide)?; T)A fin.s> szt} U

{s,z,t | sz € SAzt €(—(poide)?;skip) ANfin.s>sxt}U{s | s €S Ainf.sp> s}
= { (45): def. of b7 twice }

{s,z,t | sz€ SAzt€ TAfins AN(poidz).z>szt}U

{s,z,t | sz e SAzt€skipAfinsA—(poidr)z>szt}U{s| seSAinf.s> s}
= { (36): def. of skip; sz .= s }

{s,z,t | s € SAzt € TAfin.s N(poidz).z>szt}U

{s|seSAfins N\=(poids).(last.s)>stU{s | se€ SAinf.s>s}
= { range split }

{s,z,t | sse SAzt€ TAfin.s AN(poidz).z>sat}U

{s | seSA(inf.sV (fin.s AN=(poidz).(last.s))) > s}
= { absorption, since fin.s A inf.s = false }

{s,z,t | ss€ SAzt € TAfin.s AN(poidz).z>szt}U

{s1 s€SA(inf.sV-(poidz).(last.s))> s}
= {(39): def. of 9, }
S<, T

O

This theorem demonstrates how the semantics of the IF statement can be used to describe conditional
composition.

Theorem

<, is associative (49)
Proof. TFollows from (48) and (42), (44), (46). a
Theorem

<, is universally U-distributive in its left argument. (50)
Proof. Follows from (48) and (43), (46). O
Theorem

<, is positively U-distributive in its right argument.
Proof. Follows from (48) and (42), (44), (46). O

WEAKEST PRECONDITIONS

We define function wp.S.Q to be the weakest condition on the initial state such that: execution of §
terminates; on termination @ holds [4]. We examine the weakest precondition semantics for conditional
composition. We use the usual wp semantics from [4] using the definition of wp presented in [8], [11] in terms
of traces.

wp.S.Qr=(N1t| firstt=zAtESvfintA Q. (last.t)) (51)

We confine our attention to predicates @ that are partitioned predicates. Let t = (| | i | i €U v i:1.0)
be a tagged collection of predicates. We associate partition ¢ with predicate ¢.:. We define the partitioned
predicate T represented in terms of ¢ to be

RVMTb -11

[T =Y i>([i] oidz) = t.1)] (52)

From now on, we use tagged collections and predicates interchangeably. Using this definition of a

predicate, we can explore properties of the wp and <,. We first examine some additional properties that
relate «po, C, and partitioned predicates.

Theorem
For a partitioned predicate @,

(@ =C.Q] (53)
Proof.

C.Q
{ def. of C }
(L]ivi:Q)
= {62}
(Vi> ([{]oidz) = Q)
= {62}
(Viv ([doidz) = (v e ([]oide) = Q)
= { = overV}
(Vi (Vg ([orde) = (([1] 0 idz) = @Q.4)))
= { interchange of dummies }
(Ve (v ([orde) = (([1] o idz) = @Q.4)))
= { pred. calc. }
(vye (3o [i]oudz) = (1] ode) = Q.9))
= { idz is total }
(Ve ([]ewz) = Q)
{(52) }
Q

O
From (53), we can see that the set of partitioned predicates is the same as the set of ordinary predicates.
Therefore, a partitioned predicate is simply a predicate that has some structure.

Theorem
[(poide)=(3 il p.iv[i]oida)] (54)
Proof.
(Filpiv([i]oide).z)
{ trading }
(Fil ([{]oidz).z > p.i)
{ def. of [i] }
(3l [ide.z =1]>p.a)
= { one-point rule }
p.(idz.z)
{ def. of o }
(poide).z

We now examine the effect of «po on partitioned predicates.

Theorem

[(Q epo R) = (=(poidz) = Q) A((p o 1dz) = R)] (53)

Proof.
(m(poidz) = Q)A((poidz) = R)
= { (54) twice }
(@il —pav[ioudz)y = Q)A((F il p.iv[i]oidz) = R)
= { pred. calc. }
(Vil-piv([iJoidz)= Q)N il p.iv([i]oidz)= R)
= { (81): def. of apo; (52) }
(|ivi:Q) apo (|| iv it R)
= { def. of C, twice }
C.QQ apo C.R
{ (53) twice }
Q oo R

RVMT7b -12

O

We now examine some properties of wp. Since the traces of semicolon, skip, and assignment are the

same as those in [8] and [11], all their results still hold. In particular, we have
Theorem (From [8], [11].)

[wp.skip.Q = Q]

[wp.(v:=F).Q = Qv := E]]

[wp.(S;T).Q = wp.S.(wp.T.Q)]

We now examine the weakest precondition semantics for conditional composition.

Theorem
[wp.(S <, T).Q =wp.S(Q apo wp.T.Q)]
Proof.
wp.(S <, T).Q

= { (48): <, as IF }
wp.(S; if (p o idz) — T1—(p o 1dz) — skip).Q
= { (58): wp of ; }
wp.S.(wp.if (poidz) — T]—(poidzx) — skip i.Q)
= {wpof IF (from [4], 8], [11))
wp.S.(((poidz)V(poide)) A((poidz) = wp.T.Q)A (—(p o idz) = wp.skip.Q))
= {[XV-X] (56))
wp.S.(((poide) = wp. T.Q)A(—(poidz) = Q))
= {05}
wp.S.(Q apo wp.T.Q)

We now relate <9, to the composition operator o,,.

Theorem
[wp.(S <y T)=wp.S op wp.T]
Proof.
wp.(S <, T).Q

= {(59): wp of <, }
wp.S.(Q apo wp.T.Q)
{(53) }

—~
ot
b

S—

(60)

RVMT7b -13

wp.S.(Q apo C.(wp.T.Q))
= { (33): def. of o, using «po }
(wp.S op wp.T).Q
O
We conclude this section by identifying a program with its weakest precondition. We have the following
correspondences:
skip = id
S, I'=S0, 1T, or
<1p =0y

<p:.p

3. APPLICATION AREA: PROGRAMMING LANGUAGES
The <, operator presented above can be used in various ways. In this section, we suggest a disciplined
approach to the introduction of such an operator into a programming language.
We then demonstrate how one can use this operator to describe the semantics of exceptions [7], loop
exits, and structured jumps [1].

3.0. SEMANTICS OF PARTITIONS
We describe how the semantics of conditional composition can be used to describe the semantics of a
program given a partition of the state space. We identify an element of the partition with an element from
the index set U.
Restriction. FEach element of the partition of the state space has the same cardinality. Fur-

thermore, there exists a well-defined mapping from one element of the partition to another.
(End of Restriction.)

3.0.0. PARTITIONS
We assume that there exist functions | | for & € U, which map states to states. These functions are
assumed to satisfy the following two properties:

V2, ko ide.|z|p = k) (61)
(Voo ¥k je[lz]e]; = [2];)) (62)

Properties (61) and (62) guarantee that the partitions are of equal size. [iJoidz can be used to determine
if the current state belongs to element i from the partition. The restriction given above implies that there
exist functions | | satisfying (61) and (62).

3.0.1. PROGRAM STATEMENTS
Notice that the functions | |; define a method by which one can switch from one element of the
partition to another. To enable us to do this in the framework of a programming language, we introduce a
new statement switchy, defined by

switchy = {z >z |z]r} (63)
Restriction. For a programming language implementing such a semantics, switch is the only

statement by which a transition can be made from one element of the partition to another.
(End of Restriction.)

Theorem (Left zero)
switchy is the left zero of 9, for all £ satisfying —p. (64)

Proof.
switchy <, T
= { (39): def. of 9, }

RVMT7b -14

{s,z,t | sz € switchy Nzt € T A fin.s A(p oidz).z > sxt} U
{s | s € switchy A (inf.s V =(p o idz).(last.s)) > s}

= { (63): def. of switch, since =p.k }
{s | s € switchy > s}

= { def. of set }

switchy

Theorem
wp.switchy. Q.z = Q.|z] k. (65)
Proof.

wp.switchy. Q.
= { (51): def. of wp }

(V¢ | first.t =z AT E switchy > fin.t A Q.(last.t))
= { (63): def. of switchy }

Vitlt=zv> Q.[t]k)
= { one-point rule }

Restriction. FEarlier, we had used tagged collections as predicates. We now impose one addi-
tional restriction on the predicates used in the tagged collection. If @ is the tagged collection

(L] &> k:q.k), then
Vi,5,kzeqk|z] =gk |z];) (66)

In other words, @.k.z does not depend on the element of the partition to which z belongs.
(End of Restriction.)

Theorem
wp.switchy = [, (67)
Proof.
wp.switchy. Q.
= {65}
Q.z]x
= { (52): tagged collection as a predicate }
= {(66)}
Q.k.x
= {(9): def. of [}
(I%-Q).z

Once again identifying a program with its wp, we have
switchy = [,

Note that the properties of functions discussed in section 1 do not always carry over to the trace
semantics, although they are maintained by the weakest precondition semantics. This can be expected,
since trace semantics are more concrete than wp semantics which only refer to initial and final states of the
computation. We can derive additional properties using the theorems from section 1. For instance, we can
prove (from (10)) that

RVMT7b -15

switchy 1, S =5, if p.k

The semantics of partitioned state spaces can be used in various ways. Defining the partition of the
state space in different ways can result in semantics for different language constructs. The sections below
describe three such partitions of the state space. They use the following partitions:

1. For the semantics of exceptions presented in [7], a boolean coordinate oc is introduced into the
state which is used to partition the state space into two subspaces.

2. To extend the semantics presented in [7] to handle more than one exception, we let the oc coordinate
be integer valued.

3. Structured jumps use a partition in which an extra coordinate label is used to identify the label of
the block to which a branch is to be executed.

3.1. SEMANTICS OF EXCEPTIONS—NORMAL AND EXCEPTIONAL STATES

In this section, we relate the semantics presented in [7] to those presented here. < is used to denote the
< operator from [7]. Note that in [7], there is an underlying assumption that all programs begin in normal
states. The functions considered in [7] are from D x D — D, which is a special case of the generalized
compositions presented here with ¢ = {0,1}.

3.1.0. FUNCTIONS OF TWO ARGUMENTS

We have the following correspondence between functions and compositions presented in [7] and those
explored in this note. The correspondence follows from the fact that the normal state is identified with
0 € U, and the exceptional state is identified with 1.

Exceptions Partitions Exceptions Partitions
¥ Ofalse L lo
S °[o] R [
9 °p] =] L2]o
o Otrue [z] lz]1

We have that

. _{0 if z.oc =1
dr .z = .
1 ifz.oc=T

|z]o = z[oc := 1]

[z]1 = z[oc = T]
The theorems presented in [7] follow from those presented here. In addition, we have the following corre-
spondence:

nor = [0] o idz
exc = [1] o idz

3.1.1. TRACE SEMANTICS

The program constructs presented in [7] are different from those presented here. In particular, execution
always begins in the normal state, and the try operator lowers the exception before executing the exception
handler. We have the following correspondence between the semantics presented in [7] and in this note.

Exceptions Partitions
S; T S T
ST S <ny (switcho; T)
raise switchy
skip {z>|z]o}

Notice that the normal and exceptional states defined in [7] are not symmetric, a fact reflected in the
table given above.

3.1.2.

3.2.

3.3.

RVMT7b -16

Theorem

S QAT =5 <y (switcho; T)
Proof.

S <Any (switcho; T)
{ (39): def. of <pyp }
{s,z,t | sz € S Azt € (switchg; T) A ([1] o idz).z A fin.s > szt} U
{s|1 seSA(inf.sV-([1]oidz).(last.s)) > s}
= (-[l=[0])
{s,z,t | sz € S Azt € (switchg; T)A ([1] 0 idz).z A fin.s > szt} U
{s | s€SA(inf.sV([0] oidz).(last.s)) > s}
= { (38): def. of ; since switchy contains only finite traces of length > 1 }
{s,t,u,z,y | szt € SAuxty € switcho Ayu € T A fin.s A ([1] o idz).z > sztyu} U
{s | s€SA(inf.sV([0] oidz).(last.s)) > s}
= { (63): def. of switchg; t,y =€, |z]o }
{s,u,z | st € SA|z]ou € TAfin.s A([1]oidz).z > sz|z|ou} U
{s | s€SA(inf.sV([0] oidz).(last.s)) > s}
= { switch to notation in [7] }
{s,u,z | st € SA|z]u € TAfin.s Aexcz>sz|z|u} U
{s | s € SA(inf.sV nor.(last.s)) > s}
= { from [7] }
S<aT

WEAKEST PRECONDITIONS

The semantics differ in the definition of the weakest preconditions. The reason for this difference is that
[7] only considers programs that execute statements in the normal state.

[7] defines the weakest precondition of a statement S given postcondition @ to be the condition that
guarantees that: the program terminates in a normal state; on termination ¢ holds. As opposed to this,
we define the weakest precondition to be the condition that guarantees that: the program terminates; on
termination ¢ holds. Also, we do not have to apply wp.S to a pair as in [7], but to a single (partitioned)
predicate.

MORE THAN ONE EXCEPTIONAL STATE
If we extend the semantics in [7] to n exceptions, and we define <Jj to be <7, then we can use similar
correspondences between the constructs presented in this note and [7] to obtain a semantics for programs
with more than one exceptional state.

LOOP EXITS
Modula-3 is an example of a programming language with exceptions [10]. A loop exit in Modula-3 is

considered to be the raising of an exception which causes control to be passed outside the loop. With the
semantics described in this note, switchy can be used to exit from a loop, and wp-semantics may be used to
determine the condition which holds on termination of the loop. We use loop S end to mean an infinite
repetition of statement S, composed using 4p;y; that is, S 4y S 4y - -

(loop S end) 9y &
In the program given above, S is a statement, possibly containing switchy statements,; in which substatements
are composed using <;y.

Multiple exits can be defined using a single exception handler which can handle more than one type
of exception using a structure similar to the one shown above. If there are two possible exits, say & and [,

RVMT7b -17

switchy or switch; can be used to exit the loop. The semicolon used to define the loop now becomes 4 jvy-
The exit exception handler can be refined to handle the two different exists separately as follows:

(loop S end) <ppviy ((skip <y £0) <y £1)

3.4. STRUCTURED JUMPS

Another application of the semantics presented here is to define the meaning of a branch statement (cf.
[1], [2]). We describe how a structured branching technique can be implemented with two different statement
labels. For two labels, we let Y = {A, B, N, E'}.

Let A and B be the branch labels. Let S0, S1 be the programs which are executed when control is
transferred to labels A and B respectively. switcha, switchp are statements which transfer control from one
statement block to another directly. The program shown below implements such a branching scheme using
the composition operators described in this note. We assume that the program starts executing S0 initially.
E is used to terminate execution, and the semicolon shown below is defined to be <yj. Substatements
(if any) of SO and S1 are composed using <[yj. The semicolon defining the loop is 4jzy. If we interpret
A<, B4, C tomean (A <, B) 4, C, then the program can be written as:

(switcha Qpapvip] loop skip
<4y (switchy; SO; switchgy)
By (switchy; S1; switchg)

end <[gy switchy)

3.5. DISCUSSION

In this section, the semantics of partitions was introduced by imposing restrictions on programming
language constructs, and introducing the switch statement. It was shown how partitions could be used to
give a semantics for exceptions, loop exits, and structured jumps. Notice that theorem (48) suggests an
implementation of the semantics of partitions using the IF statement. By showing how this operator can
be used to describe exceptions, we have also demonstrated that a programming language with exceptions
would have to check if an exception had been raised after the completion of every statement. However,
the suggested restrictions on programming languages —namely, that switch is the only statement that can
change the current partition— would enable a large number of these checks to be removed, since statements
that raise or lower exceptions could be determined syntactically.

The presented trace semantics was preceded by two attempts. As a first attempt, the trace semantics
presented in [7] was extended to allow raise to be the left and right identity of <. This led to our next
attempt in which we tried to formulate a symmetric semantics for exceptions. lower was introduced as the
counterpart of raise. In this note we have presented a semantics which handles any partition of the state
space uniformly.

The results from [7] served as the foundation for the semantics presented here. Other early references
to semantics in particular semantics of exception handling are [3] and the unpublished [1]. The formerly
mentioned of these references provides a good discussion of how exception handling can simplify the structure
of certain programs. It gives separate predicate transformers for normal and exceptional outcomes, whereas
we do not distinguish between the two. In [1], an arbitrary number of outcomes is considered and a structured
branching scheme is discussed. In [7], wep.S is applied to a pair of predicates, whereas we only have one
(partitioned) predicate.

4. APPLICATION AREA: DATABASES

For a tagged collection (| | i > i: V.i), we may, in the realm of databases, consider each i: V.7 pair a
row, whose key is ¢. Then we may want to apply operation op to only some of the rows, discriminating based
on the key. For the selection of the rows, we use a predicate over the index set, usually denoted p.

We show some applications of epo to relational databases [12]. We may think of Tag.D as the type of
a keyed relation, in which some keys may have no value. In an actual database, that would be represented
by the absence of a row. Here, however, we need some value associated with each key. Rather than just
introducing a special value to indicate an empty row, we let the the tagged collection be over sets of values

RVMT7b -18

of the rows in the relation that is modeled. Hence, we choose D to be some power set. This also allows a key
to have associated with it a set of size greater than 1. If in a tagged collection, every key is associated with
a set of size at most 1, then we say the tagged collection (or relation) to be uniquely keyed. In the sequel,
we will let “p-rows” refer to those rows specified by p.

We now have that

AU, B
is, in terms of the modeled relations, A with the p-rows of B added. Similarly,
ANy B
is A in which each p-row has been reduced so as to only include those values also found in the corre-

sponding row of B.
The replace operation is written

A «po B
The value of this expression is A with the p-rows replaced by the p-rows of B. In other words, it is A
less its p-rows, plus the p-rows of B.

Also, if A and B are uniquely keyed relations and + is some binary operation defined over the values,
we can define 4+ over sets of values as

{a} + {6}
{a} + {}
{3 +{b} {6}
O+ { {}

With that definition, A+, B yields A in which the values of the p-rows are increased by the corresponding
values in B.

{a+b}
{a}

5. APPLICATION AREA: EMBEDDED SYSTEMS

Consider an embedded system which has various priority levels numbered from 0 to N — 1. Level 0
represents the normal level of operation. All other levels represent an emergency situation which must be
handled before normal execution can resume. The levels 1 to (N — 1) represent different degrees of the same
emergency. After handling the emergency at level k, the system can lower the emergency to some other level.
The state space is extended with coordinate lev which indicates the current emergency level. We assume
that there is some external process that can increase lev at any time. This external process will inform the
system of any emergency that occurs by raising lev.

We assume that there exists an atomic lower(m, n) operation which can be described as:

lower(m,n) = if lev < m — lev := n[lev > m — skip i

We need atomicity of this operation since the predicate lev < m is not monotonic in lev. To enable
execution to resume in the middle of a routine that handles an emergency, we add the following N coordinates
pc[0... N —1]. In addition, each routine has certain critical sections which cannot be interrupted no matter
what the emergency level is. To handle these, we use the semicolon which is defined to be <y.. Initially,
all the newly introduced coordinates are zero. We can describe the system as follows:

SYS = loop skip
Dlev=0 SO

Dlev=0 Sl

tey=N-1 SN-1
end
where Sj is defined as:
Sk = loop skip

Qtev=kApe[k]=0 Sk,0; pclk] =1

6.

o

RVMT7b -19

<]lev:k/\pc[k]:1 Sk,1;pc[/€] =2

Qev=kApelk]=M—1 Sk,p—1; pe[k] :==0
end
The semicolon that defines the loop for SYS is <¢ye. The semicolon that defines the loop for S is
Qew=k. Statements S; ; are actions composed with the semicolon. Since semicolon has been defined to be
<¢rue, these actions are not interruptible.

CONCLUSION

In this note, tagged collections and their compositions were introduced. These collections can be viewed
as quantified expressions and can be used to manipulate lists and functions using the existing properties
of quantification and one additional axiom. These tagged collections were used to introduce the theory of
conditional composition of functions, and the conditional replace operator.

These concepts were used to describe the semantics of programming languages, and to introduce new
programming language constructs. We described the semantics of partitioned state spaces, which was then
used to describe the semantics of exceptions, loop exits, and structured jumps. The conditional replace
operator was used to describe operations in relational databases. Conditional composition was used to
describe the operation of an embedded system with priority levels.

References
R.-J.R. Back and M. Karttunen. A predicate transformer semantics for statements with multiple exits.
University of Helsinki, unpublished MS, 1983.
J. de Bakker. Mathematical Theory of Program Correctness. Chapter 10. Prentice-Hall, 1980.

F. Cristian. Correct and robust programs. [IEEE Transactions on Software Engineering, 10:163-174,
1984.

E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag, 1990.
R.M. Dijkstra. Operational Semantics: correction & embellishment. Internal Note rutger 16, 1993.

H.P. Hofstee, and K.R.M. Leino. Class notes, CS284: Reasoning about Program Correctness: Sequential
Programs. California Institute of Technology, Spring term 1993-94.

K.R.M. Leino and J.L.A. van de Snepscheut. Semantics of Exceptions. To appear, IFIP transactions
1994

J.J. Lukkien. An operational semantics for the guarded command language. In R.S. Bird, C.C. Morgan,
and J.C.P. Woodcock, editors, Mathematics of Program Construction, number 669 in Lecture Notes in
Computer Science, pp 233-249. Springer-Verlag, 1993.

J.J. Lukkien. Parallel Program Design and Generalized Weakest Preconditions. PhD thesis, Groningen
University, 1991. Also, Caltech technical report CS TR 90-16.

G. Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, 1991.

J.L.A. van de Snepscheut. On Lattice Theory and Program Semantics. Caltech technical report CS TR
93-19.

J.D. Ullman. Principles of Database Systems, Computer Science Press, 1982.

